Skip to Main Content

TIM-8521

Lesson 1 Required Resources

ACCESS your Zylabs.com material from the Lesson module in your course.  

Applied Statistics with Data Analytics (R), Zylabs.com   

  • Read Chapter 18 and Chapter 19 

Data Science Foundations with R, Zylabs.com 

  • Read Chapter 3 

This reading provides the necessary foundation for setting up the EDA environment. 

 

Lesson 2 Required Resources

ACCESS your Zylabs.com material from the Lesson module in your course.  

Applied Statistics with Data Analytics (R), Zylabs.com   

  • Read Chapter 15, Chapter 29.2 

Data Science Foundations with R, Zylabs.com 

  • Read Chapters 3, 4 

This reading provides the necessary foundation for setting up the EDA environment

Module 1 Optional Resources

More Optional Readings: 

Optional Readings 

  • Harvard Business School Online. (n.d.). Data collection methods. Retrieved from https://online.hbs.edu/blog/post/data-collection-methods  

  • Leonard Richardson. (n.d.). Beautiful Soup Documentation. Retrieved from https://www.crummy.com/software/BeautifulSoup/bs4/doc/  

  • Scrapy Developers. (n.d.). Scrapy Documentation. Retrieved from https://docs.scrapy.org/en/latest/  

  • SeleniumHQ. (n.d.). Selenium Documentation. Retrieved from https://www.selenium.dev/documentation/en/  

  • Willis, G. B. (2004). Cognitive interviewing: A tool for improving questionnaire design. sage publications. 

  • Lunemann. (2006). Cognitive Interviewing: A Tool for Improving Questionnaire Design. Technical Communication., 53(1). 

  • Emilio, M. D. P. (2013). Data acquisition systems. Springer. 

  • Park, J., & Mackay, S. (2003). Practical data acquisition for instrumentation and control systems. Newnes. 

  • Basili, V. R., & Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE Transactions on software engineering, (6), 728-738. 

  • Van Selm, M., & Jankowski, N. W. (2006). Conducting online surveys. Quality and quantity, 40, 435-456. 

  • Evans, J. R., & Mathur, A. (2005). The value of online surveys. Internet research, 15(2), 195-219. 

  • Rendon, E., Alejo, R., Castorena, C., Isidro-Ortega, F. J., & Granda-Gutierrez, E. E. (2020). Data sampling methods to deal with the big data multi-class imbalance problem. Applied Sciences, 10(4), 1276. 

  • Lehner, P. N. (1992). Sampling methods in behavior research. Poultry science, 71(4), 643-649. 

  • Shapiro, A. (2003). Monte Carlo sampling methods. Handbooks in operations research and management science, 10, 353-425. 

  • Yates, F. (1953). Sampling methods for censuses and surveys. Sampling methods for censuses and surveys., (2nd ed).  

  • Lomborg, S., & Bechmann, A. (2014). Using APIs for data collection on social media. The Information Society, 30(4), 256-265. 

  • Campan, A., Atnafu, T., Truta, T. M., & Nolan, J. (2018, December). Is data collection through twitter streaming api useful for academic research?. In 2018 IEEE international conference on big data (big data) (pp. 3638-3643). IEEE. 

  • Wu, W., Wang, P., Xie, Y., Liu, Y., Chow, G., & Wang, J. (2023). Web Connector: A Unified API Wrapper to Simplify Web Data Collection. Proceedings of the VLDB Endowment, 16(12), 4042-4045. 

  • Sawant, A. A., & Bacchelli, A. (2015, May). A dataset for API usage. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories (pp. 506-509). IEEE.