Skip to Main Content

DDS8501

Module 1 Required Resources

Zybook Short Tutorial 

Students to learn how to access Zybook and Zylabs from within the Module. 

Data Science Foundations with R, Zylabs.com 

  • Read Chapter 1: Introduction to Data Science 

  • Read Chapter 2.  R for Data Science 

Zylabs reading provides the necessary foundation for data analysis environment setup. 

Applied Statistics with Data Analytics (R), Zylabs.com   

  • Read Chapter 15.1 What is Data 

  • Read Chapter 16.3 Data frames 

Zylabs reading provides the necessary foundation for data analysis environment setup. 

Analytical Environment Setup (Please choose at least one method): 

Students can use either RStudio, Google Colab, or Posit Cloud to perform R programming in this class.   

Module 1 Recommended Resources

Hands-on Exploratory Data Analysis with R: Become an Expert in Exploratory Data Analysis using R Packages

Datar, R., & Garg, H. (2019). Hands-on exploratory data analysis with R: Become an expert in exploratory data analysis using R packages. O'Reilly Media, Inc. 
 

  • Read Chapter 1. Setting Up Our Data Analysis Environment. 

  • Read Chapter 2. Importing Diverse Datasets 

Helps students prepare their analytical environment. 

R Programming for Statistics and Data Science 

R Programming for Statistics and Data Science (Media from Packt Publishing available freely through O’Reilly Media Inc.). (2018). 

  • Watch and Read Chapter 1 through Chapter 3. 

Helps students prepare their analytical environment. 

R Markdown: The Definitive Guide 

Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive guide. CRC Press. https://bookdown.org/yihui/rmarkdown/ 
 

  • Read Chapter 1. Installation 

  • Read Chapter 2. Basics 

This reading demonstrates how to compile our work in R Markdown and publish it to RPubs (free). These skills are necessary in building a data science portfolio. 

NIST/SEMATECH Engineering Statistics Handbook

Smeaton, A. (2003). NIST/SEMATECH Engineering Statistics Handbook. https://www.itl.nist.gov/div898/handbook/ 

 

  • Read Chapter 1.1. Exploratory Data Analysis Introduction 

Smeaton defines EDA, its purpose, and its history, setting the stage for the entire course content. 

Module 1 Optional Resources

Nominal, Ordinal, Interval, and Ratio Typologies are Misleading 

Velleman, P. F., & Wilkinson, L. (1993). Nominal, ordinal, interval, and ratio typologies are misleading. The American Statistician, 47(1), 65-72. 
This article provides a critical look at Steven’s typologies. 

Example of Executive Summary Framework 

Example resource to be used in the assignment.