Skip to Main Content
NU Library
LibGuides
Course Reading Lists
ANA670
Module 3
Search this Guide
Search
ANA670
Home
Module 1
Module 2
Module 3
Module 4
Library Portal
Module 3 Required Learning Resources
Artificial Intelligence: A Modern Approach - Lesson 6
Stuart Russell and Peter N. (?),
Artificial Intelligence: A Modern Approach
, 4th Global ed.
Engineering Optimization: An Introduction with Metaheuristic Applications - Lesson 6
Xin-She, Y. (2010).
Engineering Optimization: An Introduction with Metaheuristic Applications
. John Wiley & Sons, Inc.
Print ISBN:9780470582466 |Online ISBN:9780470640425 |DOI:10.1002/9780470640425
Artificial Intelligence: A Modern Approach - Lesson 7
Artificial Intelligence: A Modern Approach, 4th Global ed.
by Stuart Russell and Peter Norvig
Module 3 Optional Resources
Random walk and Markov chain
What is a Random Walk? | Infinite Series
Random Walks - The Mathematics in 1 Dimension
Random Walk (Implementation in Python)
Random Walk--1-Dimensional
Markov Chains
Markov Chains - Explained Visually
Markov Chains Clearly Explained!
Reinforcement Learning
Reinforcement Learning
Reinforcement Learning 101 - Learn the essentials of Reinforcement Learning!
What is reinforcement learning? The complete guide
Reinforcement learning
Multi-Objective Optimization
Multiobjective optimization & the pareto front
Pareto Optimality - video
Pareto Optimality - pdf
Multi-Objective Problems
Intro Into Multi Objective Optimization
Pymoo: Multi-objective Optimization in Python
Lesson 1
Lesson 2
Lesson 3
<<
Previous:
Module 2
Next:
Module 4 >>